

Emory Psychology Building Atlanta, GA

Chris Renshaw

Construction Management Senior Thesis Presentation 2009 The Pennsylvania State University

Project Overview

- Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Building Statistics

• Size

• 119,000 SF; 5 stories+mechanical penthouse

• Cost

- \$35,029,000 (GMP)
- Schedule
 - October 2007 March 2009
- Structure
 - Concrete, steel penthouse framing
- Façade
 - Limestone dimension stone, stucco, glazed curtain wall

LEED NC

silver certified

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Use

- Labs, Classrooms, Offices of Psychology Department
 - Currently spread throughout campus in six buildings

Project Overview

- Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

AE Senior Thesis

Chris Renshaw

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

- Used successfully on Psychology Building
- How and why?
 BIM Implementation (Depth Study)
 How does this measure up across the industry?

- HOK decided to use BIM
 - Develop spatial relationships
 - Create room data sheets

- Benefits of architect using BIM
 - Pushed design decisions earlier
 - Early information stays with the model
 - Made occupants aware of what they were getting
 - Allowed renderings from any angle
 - Sustainable Design

AE Senior Thesis

- Integrated Project Delivery
- Holder brought on during schematic design
 - Aid with constructability
 - Create structural model early
 - 4D scheduling/phase planning
 - Estimating

AE Senior Thesis

Chris Renshaw

4D Scheduling

Psychology Building BIM Use

- Integrated Project Delivery
- Holder brought on during schematic design
 - Aid with constructability
 - Create structural model early
 - 4D scheduling/phase planning
 - Estimating

Structural Model

AE Senior Thesis

Chris Renshaw

4D Scheduling

Psychology Building BIM Use

- Integrated Project Delivery
- Holder brought on during schematic design
 - Aid with constructability
 - Create structural model early
 - 4D scheduling/phase planning
 - Estimating

Estimating

AE Senior Thesis

Chris Renshaw

- Integrated Project Delivery
- Subcontractors brought on during design development
 - Required to purchase Navisworks
 - Created models of their disciplines
 - Accepted training from Holder if necessary
 - Coordinated weekly

HVAC Model

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Psychology Building BIM Use

- Construction phase
 - Weekly Coordination meetings continued
 - Clashes fixed as needed
- Post-Construction
 - HOK and Holder will provide as-built models

Collision Detection/Resolution

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

- Problem Still skewed perceptions of BIM
 - Modeling without information
 - Beyond MEP clash detection
- Construction Manager BIM Study – Determine how the model is being used in addition to clash detection
 - Determine what would allow more usage of BIM

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Construction Manager BIM Study

- 4 construction managers
- Known to be successful users of BIM
 - What has made them so successful?
 - What characteristics do they share?
 - How do they analyze a building for BIM use?
 - What are they doing with BIM that others aren't?

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Construction Manager BIM Study

- Interviews pertained to 19 categories
- Consensus on 8 Categories
 - Early assessment of project (RFP Review)
 - Project Players and MEP coordination are focus
 - MEP clash detection is the primary use

- Architects rarely design in 3D or provide a model
- Subcontractors are expected to create the model for their discipline
- Subcontractors eventually realize benefits after learning curve
- RFI decrease and increased response time are one of the largest benefits
- Estimation is not fully trusted and is backed up

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Construction Manager BIM Study

- Other categories vary
 - Owner's reactions
 - IPD view
 - Stages of new technology implementation

Owner's Reactions

- Most are apprehensive and lack awareness of what BIM is and is capable of
- Like the idea but don't know how to ask for what they want from the model
- Unrealistic expectations

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Construction Manager BIM Study

- Other categories vary
 - Owner's reactions vary
 - IPD view
 - Stages of new technology implementation

IPD View

• Helps but not crucial

• Is a huge benefit, one of the larger benefits of BIM as a whole

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Construction Manager BIM Study

- Beyond clash detection...
 - Estimating
 - 4/5D modeling for scheduling
 - Material tracking
 - Facilities management model development

- Radio frequency identification tags
- Large volume of material
- Tells location on building, delivery status, installation status, etc.

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Construction Manager BIM Study

- Beyond clash detection...
 - Estimating
 - 4/5D modeling for scheduling
 - Material tracking
 - Facilities management model development

Chris Renshaw

Facilities Management

- Provides an as-built model with information linked to it
 - Warranties
 - Owner's manuals
 - Insurance information
 - Preventative maintenance information

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Construction Manager BIM Study

- Conclusions
 - Owner's need to be informed
 - Find a way to quantify schedule and cost savings
 - IPD is most effective now while there is a learning curve for the software
 - Several uses of BIM are being applied, CMs must keep an open mind and look for ways to expand BIM use

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

• Problem

- A green roof may have been added to the flat roof to achieve higher energy efficiency and a better return on investment.
- Goal Green Roof Study
 - Determine if a green roof would be more beneficial than the currently designed white roof.

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study

- Benefits
 - Energy conservation
 - Longer service life
 - Heat island mitigation
 - Additional LEED credits
 - Less storm water input
 - Aesthetic improvement

- Negatives
 - High initial cost
 - Impact on structure
 - Other roofs can achieve similar LEED credits

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study

- Green Roof design
 - 14,600 SF flat roof area available
 - Extensive system (4" growing media)
 - Waterproofing system by NationsRoof
 - Flood irrigation system
 - Plants mostly sedum and delosperma

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study

• Cost

- Original roof: \$382,000.00 (\$26.16/SF)

- Green roof: \$391,629.03 (\$26.82/SF)

- Additional: \$9,629.03 (\$0.66/SF)

Cost Breakdown

Component	Cost/Unit	Unit	Qty.	Cost
Plants	\$ 7.60	SF	14600	\$ 110,960.00
Media	S 1.74	SF	14600	\$ 25,404.00
EPDM	S 2.88	SF	14600	\$ 42,048.00
Insulation	\$ 3.45	SF	14600	\$ 50,370.00
Prime Board	\$ 1.87	SF	14600	\$ 27,302.00
Adhesive	\$ 0.68	SF	43800	\$ 29,784.00
Asphalt Layer	\$ 1.03	SF	14600	\$ 15,038.00
Pavers	\$ 3.69	SF	2607	\$ 9,619.83
Edging	\$ 12.80	LF	1614	\$ 20,659.20
Drainage Layer	\$ 4.14	SF	14600	<u>\$ 60,444.00</u>
			Total	\$ 391,629.03
			SF Cost	\$ 26.82

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study

- The green roof will take longer to install
 - Original roof: Approx. 3.5 weeks
 - Green roof: Approx. 5.5 weeks
- The building will not be dried in for another 5.5 weeks after the green roof is installed

Original roof finish date:	6/18/
Green roof finish date:	7/2/0
Building enclosure:	8/8/0

Schedule Impact

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study (Structural Breadth)

- Structural impact
- Penthouse Steel

	Dead Load	Live Load	Factored Load
Green Roof	65 psf	20 psf	112.4 psf
Original Roof	42 psf	20 psf	82.4 psf
% Increase	54.8%	0%	36.4%

Chris Renshaw

Beam Redesign:

Member	Max Shear (kips)	Max Moment (ftkips)
W14x22	94.8	125
x1.364	129.3	170.5
W16x31	131	203

Μ	lember	Max Shear (kips)	Max Moment (ftkips)	
v	V18x40	169	294	
3	x1.364	230.5	401	
v	V18x65	248	499	

Column Redesign:

Girder Redesign:

Member	Max Axial (kips)
W8x24	76
x1.364	103.7
W8x35	115

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study (Structural Breadth)

• Structural steel cost increase:

	Member	LF	Cost/LF	Cost
Original	W14x22	797	\$ 40.40	\$ 32,198.80
Redesign	W16x31	797	\$ 55.64	<u> </u>
			Difference=	\$ 12,146.28
Original	W18x40	268	\$ 71.62	\$ 19,194.16
Redesign	W16x31	268	\$ 113.00	<u>\$ 30,284.00</u>
			Difference=	\$ 11,089.84
Original	W8x24	494	\$ 47.10	\$ 23,267.40
Redesign	W8x35	494	\$ 65.60	<u>S 32,406.40</u>
			Difference=	\$ 9,139.00
			Additional Cost	\$32,375.12

Beam Redesign:

Member	Max Shear (kips)	Max Moment (ftkips)
W14x22	94.8	125
x1.364	129.3	170.5
W16x31	131	203

Member	Max Shear (kips)	Max Moment (ftkips)
W18x40	169	294
x1.364	230.5	401
W18x65	248	499

Column Redesign:

Girder Redesign:

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study (Structural Breadth)

- Structural impact
- Concrete
 - Additional loads will cause an increase in structure
 - Beam concrete increased by 33%
 - Reinforcement doubled
 - Post-tensioning assumed to increase in similar manner

Original Beam Design

Beam Redesign

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study (Structural Breadth)

- Structural impact
- Concrete
 - Formwork, concrete quantity and reinforcing will be affected
 - Concrete columns will also be affected

Additional Concrete Costs

	Increase	Unit	\$/Unit	Cost	
Concrete	98.8	СҮ	\$ 132.15	\$ 13,056.42	
Formwork	1540	SF	S 5.96	\$ 9,178.40	
Rebar	5.006	Ton	\$ 2,170.00	\$ 10,863.02	
PT Tendons	5347.86	\$	N/A	<u>\$ 5,347.86</u>	
				\$ 38,445.70	

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

• Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study (Structural Breadth)

- Structural impact
- Concrete
 - Formwork, concrete quantity and reinforcing will be affected
 - Concrete columns will also be affected

Concrete Column Costs

- Columns increase by 13.95%
- Column cost increase will be the same

Columns	Load Increase
5th Floor	0.3600
th Floor	0.1800
Brd Floor	0.0900
nd Floor	0.0450
1st Floor	0.0225
Total	0.6975
Total / 5	0 1395

 $0.1395^*(\$197,509.81) = \$27,552.62$

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study (Structural Breadth)

• Structural impact

Additional Structural Cost				
Penthouse Steel \$ 32,375.12				
5th Floor Roof	\$	38,445.70		
Columns	\$	27,552.62		
Total	\$	98,373.44		

Concrete Column Costs

- Columns increase by 13.95%
- Column cost increase will be the same

Columns	Load Increase
5th Floor	0.3600
4th Floor	0.1800
3rd Floor	0.0900
2nd Floor	0.0450
1st Floor	0.0225
Total	0.6975
Total / 5	0.1395

$0.1395^{*}(\$197,509.81) = \$27,552.62$

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study (Structural Breadth)

• Structural impact

Additional S	Additional Structural Cost						
Penthouse Steel	\$ 32,375.12						
5th Floor Roof	\$ 38,445.70						
Columns	<u>\$ 27,552.62</u>						
Total	\$ 98,373.44						

Schedule Impact

- Formwork and reinforcing will take longer
 - Extra 2 days for each penthouse slab section
 - Total extra 4 days
- Columns do not increase enough to cause delay
- Slabs will still be poured in one day
- Green roof installation will start and end 4 days later
- Will finish 1 month before building dry in

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Study (Structural Breadth)

- Total cost of adding green roof:
- Initial cost:
- Structural additions:

• Total:

\$490,002.47

\$391.629.03

\$ 98.373.44

(\$33.56/SF)

Additional Green Roof Costs

- Original Roof Cost: \$382,000.00
- Green Roof Cost: \$490,002.47
- Additional Cost: \$108,002.47

(+\$7.40/SF)

AE Senior Thesis

Chris Renshaw

How can adding \$108k to the roof cost be justified?

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Energy Savings (Mechanical Breadth)

- Will the energy savings be enough to pay back the initial cost?
 - Green roof will only help the Psychology Building roof stay cool in the summer
 - Annual air conditioning load reduction:

<u>kWH (load)</u>	<u>kWH (electricity)</u>	(electricity) <u>\$/kWh</u> Energy Sav		(electricity) <u>\$/kWh</u> Energy Savings		<u>s</u>
1301.34	1445.93	0.0917	\$ 132.5	9		

Why isn't there a larger reduction?

- Current roof is a white roof
 - Proven to keep roof temperature cooler than a typical modified bituminous membrane roof
- The current roof is very well insulated
 - Will not be as effective as the green roof but will still perform well
 - Performs well in the winter

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Life Cycle Cost Analysis

• Determine the cost of the original white roof and the proposed green roof after 50 years

Cost	(Green Roof	White Roof		
Initial	\$	490,002.47	\$	382,000.00	
Annual Energy	\$	174.56	\$	307.15	
Annual Maintenance	\$	336.00	\$	415.00	
Re-roofing Time		50 years		25 years	
Annual Energy Inflation		5%		5%	
Annual Inflation		2.89%		2.89%	

Cumulative Costs Per Year

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Life Cycle Cost Analysis

• Results

- It will take 25 years for the green roof to pay off
- After 50 years the green roof will have saved:
- White roof 50 year cost:
 Green roof 50 year cost:

t: \$1,248,485.26 t: \$563,236.94

```
$685,248.32
```

Total 50 year costs

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Life Cycle Cost Analysis

• Results

Over the 50 year period, the green roof will save an average of:

\$13,704.97 / year

Total 50 year costs

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Conclusions

- The initial cost will be \$108,002.47 (28.3%) higher
- Over time the green roof will save money, but savings won't be realized for 25 years
- The majority of the payoff will come from the extended life of the roof, otherwise ROI is not practical
- LEED impact will be minimal if any for this building

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions

Green Roof

- Benefits, design considerations, cost
- Structural implications (Structural Breadth)
- Energy savings (Mechanical Breadth)
- Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Green Roof Recommendation

- Add the green roof
- The initial cost is higher but it will be returned
- The owner expects to have the building for longer than the 50 year period examined and will have the opportunity to realize the cost benefits

- Project Overview
 - Building statistics, use, project team
- BIM Implementation
 - Psychology Building
 - Industry-wide
 - Conclusions
- Green Roof
 - · Benefits, design considerations, cost
 - Structural implications (Structural Breadth)
 - Energy savings (Mechanical Breadth)
 - Life-cycle cost analysis
- Conclusion, Recommendations
- Questions

Overall Conclusions

- BIM was used effectively on the Psychology Building, but there are always more possibilities to be explored
- The more construction managers keep an open mind, the more uses they will find for BIM and make their lives easier
- The green roof will cost more initially, but the owner will realize the long term savings since they plan on having the building for many years

Project Overview • Building statistics, use, project team BIM Implementation • Psychology Building • Industry-wide • Conclusions				Emory University: Holder Construction: Turner Construction:	Stuart Adler Brad Hutto Paul Hedgepath Josh Thompson Pat Bolger	Balfour Beatty: Barton Malow: Penn State OPP:	Mark Konchar Jesse Whalen Corinne Ambler John Bechtel George Hoover
Green Roof Benefits, design considerations, cost Structural implications (Structural Breadth) Energy savings (Mechanical Breadth) Life-cycle cost analysis 				Emory Knoll Farms:	Graham Dewar Keith Mondock Ed Snodgrass	NationsRoof: Saul Nurseries:	Joe Carbine Diana Armitrano
Conclusion, Recommendations Questions				Penn State University	: Dr. Robert Berghage Dr. David Riley Dr. Linda Hanagan Professor Robert Holland Professor Kevin Parfitt Dr. John Messner	All other AE f friends, famil parents, Kare RenshawTh	aculty, classmates, y, and especially my n and Steve anks!
	AE Senior Thesis	Chris Renshaw	4/13/09				

Acknowledgements

